Particle size and density distributions of two dense matrices in an expanded bed system

J Chromatogr A. 2002 Nov 22;977(2):173-83. doi: 10.1016/s0021-9673(02)01390-0.

Abstract

The size and density distributions of two commercial media, that is, Streamline particles and 6% agarose coated steel beads (6AS), in an expanded bed system has been studied with a glass column (26 mm I.D.) modified by side ports. The Streamline particles have a broad size distribution but a relatively uniform density, while the 6AS beads have both broad size and density distributions. The effect of liquid-phase flow velocity, liquid viscosity and settled bed height on the particle size and density distributions is investigated. It is found that the radial mean particle size and density of the two matrices are uniform, while axial classifications are obvious in the expanded beds. For the Streamline, the volume-weighted mean particle size decreases linearly with increasing expanded bed height. For the 6AS beads, however, the mean particle size is even in the axial direction, but the particle density decreases exponentially with the increase of bed height. Moreover, the mean particle size of the Streamline or the density of the 6AS beads is well expressed as a function of the normalized bed height (that is, the ratio of the distance from bed bottom to the expanded bed height). The liquid flow-rate, liquid viscosity and settled bed height influence the mean axial size or density distribution by affecting the expanded bed height.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatography, Liquid / methods*
  • Particle Size