A thorough study of the heterochromatin organisation in the pericentromeric region and the proximal long (q) and short (p) arms of human chromosome 9 (HSA 9) revealed homology between 9p12 and 9q13-21.1, two regions that are usually not distinguishable by molecular cytogenetic techniques. Furthermore, the chromosomal regions 9p12 and 9q13-21.1 showed some level of homology with the short arms of the human acrocentric chromosomes. We studied five normal controls and 51 clinical cases: 48 with chromosome 9 heteromorphisms, one with an exceptionally large inversion and two with an additional derivative chromosome 9. Using fluorescence in situ hybridisation (FISH) with three differentially labelled chromosome 9-specific probes we were able to distinguish 12 heteromorphic patterns in addition to the most frequent pattern (defined as normal). In addition, we studied one inversion 9 case with the recently described multicolour banding (MCB) technique. Our results, and previously published findings, suggest several hotspots for recombination in the pericentromeric heterochromatin of HSA 9. They also demonstrate that constitutional inversions affecting the pericentromeric region of chromosome 9 carry breakpoints located preferentially in 9p12 or 9q13-21.1 and less frequently in 9q12.