Recovery from radiation-induced (RI) myelosuppression depends on hematopoietic stem and progenitor cell survival and the active proliferation/differentiation process, which requires early cytokine support. Single cytokine or late-acting growth factor therapy has proved to be inefficient in ensuring reconstitution after severe RI damage. This work was aimed at evaluating the in vivo survival effect of combinations of early-acting cytokines whose antiapoptotic activity has been demonstrated in vitro: stem cell factor (SCF [S]), FMS-like tyrosine kinase 3 ligand (FLT-3 ligand [F]), thrombopoietin (TPO [T]), interleukin-3 (IL-3 [3]), and stromal derived factor-1 (SDF-1). B6D2F1 mice underwent total body irradiation at 8 Gy cesium Cs 137 gamma radiation (ie, lethal dose 90% at 30 days) and were treated soon after irradiation, at 2 hours and at 24 hours, with recombinant murine cytokines, each given intraperitoneally at 50 microg/kg per injection. All treatments induced 30-day survival rates significantly higher than control (survival rate, 8.3%). 4F (SFT3) and 5F (4F + SDF-1) were the most efficient combinations (81.2% and 87.5%, respectively), which was better than 3F (SFT, 50%), TPO alone (58.3%), and SDF-1 alone (29.2%) and also better than 4F given at 10 microg/kg per injection (4F10, 45.8%) or as a 50 microg/kg single injection at 2 hours (4Fs, 62.5%). Despite delayed death occurring mainly from day 150 on and possible long-term hematopoiesis impairment, half the 30-day protective effects of 4F and 5F were preserved at 300 days. Our results show that short- and long-term survival after irradiation depends on appropriate multiple cytokine combinations and at optimal concentrations. The proposal is made that an emergency cytokine regimen could be applied to nuclear accident victims as part of longer cytokine treatment, cell therapy, or both.