An additive genetic gamma frailty model for linkage analysis of diseases with variable age of onset using nuclear families

Lifetime Data Anal. 2002 Dec;8(4):315-34. doi: 10.1023/a:1020500720254.

Abstract

Many late-onset complex diseases exhibit variable age of onset. Efficiently incorporating age of onset information into linkage analysis can potentially increase the power of dissecting complex diseases. In this paper, we treat age of onset as a genetic trait with censored observations. We use multiple markers to infer the inheritance vector at the disease susceptibility (DS) locus in order to extract information about the inheritance pattern of the disease allele in a pedigree. Given the inheritance distribution at the DS locus, we define the genetic frailty for each individual within a nuclear family as the sum of frailties due to a putative major disease gene and a polygenic effect due to any remaining DS loci. Conditioning on these frailties we use the proportional hazards model for the risk of developing disease. We show that a test of linkage can be formulated as a test of zero variance due to a specific locus of the additive gamma frailties. Maximum likelihood estimation, using the EM algorithm, and likelihood ratio tests are employed for parameter estimation and tests of linkage. A simulation study presented indicates that the proposed method is well behaved and can be more powerful than the currently available allele-sharing based linkage methods. A breast cancer data example is used for illustration.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Age of Onset*
  • Aged
  • Breast Neoplasms / genetics
  • Genetic Linkage*
  • Genetic Predisposition to Disease*
  • Humans
  • Middle Aged
  • Models, Genetic*
  • Nuclear Family*
  • United States