We investigated the role of taurine in cell homeostasis and characterized the taurine transport pathway in cultured kidney cells (A6). The taurine concentration in A6 cells varies with the osmolarity of the culture medium, suggesting that taurine participates in cell osmolarity. Under isosmotic conditions, 14C-taurine efflux through the apical membranes (aJtaur) was 6-7 times lower than that through the basolateral membranes (bJtaur). Under hyposmotic conditions, aJtaur remained almost unchanged. On the contrary, bJtaur increased 8 times in comparison with isosmotic conditions. In hyposmotic conditions, bJtaur was inhibited by 500 microM DIDS, 50 microM NPPB, 10 microM of the two oxonol derivatives DISBAC(2)3 and WW-791, and 100 microM ketoconazole. Conversely, 100 microM 1,9-dideoxyforskolin, 10 microM tamoxifen, 100 microM niflumic acid and 50 microM verapamil had no inhibitory effects. Cell volume regulation upon hyposmotic stress was also found to be inhibited by DISBAC(2)3 (K0.5 of 5+/-1 microM) and by ketoconazole. Nystatin was used to permeabilize the apical membranes with the aim to further characterize bJtaur. 14C-taurine transepithelial fluxes in nystatin-treated cells were found to be linear over taurine concentrations ranging from 3.5 microM to 35 mM. Clamping the transepithelial voltage at positive values (serosal side) slightly stimulated the 14C-taurine transport. Similar time courses of 14C-taurine, 36Cl and 86Rb transepithelial fluxes were found under osmotic stimulation followed by DIDS inhibition in nystatin-treated cells. In whole cell patch-clamp experiments, DISBAC(2)3 application resulted in a strong and reversible decrease of the global Cl- current which was stimulated by hyposmotic stress. Our study indicates that taurine participates in the control of A6 cell osmolarity and that the transporting taurine pathway (efflux) is on the basolateral membranes. In addition to usual chloride channel blockers, oxonol was found to be a potent blocker of the taurine transport and of the swelling-activated chloride current. Using a pharmacological approach, we could not distinguish between a common or different pathway for Cl- and taurine.