Improvement of insulin sensitivity and lipid and glucose metabolism by coactivation of both nuclear peroxisome proliferator-activated receptor (PPAR)gamma and PPARalpha potentially provides beneficial effects over existing PPARgamma and alpha preferential drugs, respectively, in treatment of type 2 diabetes. We examined the effects of the dual PPARalpha/gamma agonist ragaglitazar on hyperglycemia and whole body insulin sensitivity in early and late diabetes stages in Zucker diabetic fatty (ZDF) rats and compared them with treatment with the PPARgamma preferential agonist rosiglitazone. Despite normalization of hyperglycemia and Hb A(1c) and reduction of plasma triglycerides by both compounds in both prevention and early intervention studies, ragaglitazar treatment resulted in overall reduced circulating insulin and improved insulin sensitivity to a greater extent than after treatment with rosiglitazone. In late-intervention therapy, ragaglitazar reduced Hb A(1c) by 2.3% compared with 1.1% by rosiglitazone. Improvement of insulin sensitivity caused by the dual PPARalpha/gamma agonist ragaglitazar seemed to have beneficial impact over that of the PPARgamma-preferential activator rosiglitazone on glycemic control in frankly diabetic ZDF rats.