Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The loss of these neurons is associated with a glial response composed mainly of activated microglial cells and, to a lesser extent, of reactive astrocytes. This glial response may be the source of trophic factors and can protect against reactive oxygen species and glutamate. Alternatively, this glial response can also mediate a variety of deleterious events related to the production of pro-oxidant reactive species, proinflammatory prostaglandin, and cytokines. In this review, the authors discuss the potential protective and deleterious effects of glial cells in the SNpc of PD and examine how these factors may contribute to the pathogenesis of this disease.