Androgens control a broad range of physiological functions. The androgen receptor (AR), a steroid receptor that mediates the diverse biological actions of androgens, is a ligand inducible transcription factor. Abnormalities in the androgen signaling system result in many disturbances ranging from changes in gender determination and sexual development to psychiatric and emotional disorders. Androgen replacement therapy can improve many clinical conditions including hypogonadism and osteoporosis, but is limited by the lack of efficacious and safe therapeutic agents with easy delivery options. Recent progress in the area of gene regulation by steroid receptors and by selective receptor modulators provides an opportunity to examine if selective androgen receptor modulators (SARMs) could address some of the problems associated with current androgen therapy. Since the composition of the transcriptional initiation complex recruited by liganded AR determines the specificity of gene regulation, synthetic ligands aimed at initiating transcription of tissue and promoter specific genes offers hope for developing better androgen therapy. Establishment of assays that predict synthetic ligand activity is critical for SARM development. Advancement in high throughput compound screening and gene fingerprinting technologies, such as microarrays and proteomics, will facilitate and accelerate identification of effective SARMs.