Neuronal differentiation from postmitotic precursors in the ciliary ganglion

Dev Biol. 2002 Dec 15;252(2):312-23. doi: 10.1006/dbio.2002.0882.

Abstract

In the chick ciliary ganglion, neuronal number is kept constant between St. 29 and St. 34 (E6-E8) despite a large amount of cell death. Here, we characterize the source of neurogenic cells in the ganglion as undifferentiated neural crest-derived cells. At St. 29, neurons and nonneuronal cells in the ciliary ganglion expressed the neural crest markers HNK-1 and p75(NTR). Over 50% of the cells were neurons at St. 29; of the nonneuronal cells, a small population expressed glial markers, whereas the majority was undifferentiated. When placed in culture, nonneuronal cells acquired immunoreactivity for HuD, suggesting that they had commenced neuronal differentiation. The newly differentiated neurons arose from precursors that did not incorporate bromodeoxyuridine. To test whether these precursors could undergo neural differentiation in vivo, purified nonneuronal cells from St. 29 quail ganglia were transplanted into chick embryos at St. 9-14. Subsequently, quail cells expressing neuronal markers were found in the chick ciliary ganglion. The existence of this precursor pool was transient because nonneuronal cells isolated from St. 38 ganglia failed to form neurons. Since all ciliary ganglion neurons are born prior to St. 29, these results demonstrate that there are postmitotic neural crest-derived precursors in the developing ciliary ganglion that can differentiate into neurons in the appropriate environment.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Differentiation*
  • Chick Embryo
  • Cilia*
  • Ganglia / cytology*
  • Mitosis*
  • Neurons / cytology*
  • Quail / embryology