We present a new method based on a transfer of population by adiabatic passage that allows one to prepare cold atomic samples with a well-defined ratio of atomic density and atom number. This method is used to perform a measurement of the cold collision frequency shift in a laser cooled cesium clock at the percent level, which makes the evaluation of the cesium fountain accuracy at the 10(-16) level realistic. With improvements, the adiabatic passage would allow measurements of density-dependent phase shifts at the 10(-3) level in high precision experiments.