The photodegradation of two common and very stable azo-dyes, i.e. methyl-orange (C14H14N3SO3Na) and orange II (C16H11N2SO4Na), is reported. The photocatalytic oxidation was carried out in aqueous suspensions of polycrystalline TiO2 irradiated by sunlight. Compound parabolic collectors, installed at the "Plataforma Solar de Almería" (PSA, Spain) were used as the photoreactors and two identical reacting systems allowed to perform photoreactivity runs for the two dyes at the same time and under the same irradiation conditions. The disappearance of colour and substrates together with the abatement of total organic carbon content was monitored. The main sulfonate-containing intermediates were found to be in lower number in respect to those obtained under artificial irradiation. In particular there were no more evidence of the presence of hydroxylated transients. The dependence of dye photooxidation rate on: (i) substrate concentration; (ii) catalyst amount; and (iii) initial pH was investigated. The influence of the presence of strong oxidant species (H2O2, S2O8(2-)) and some ions (Cl-, SO4(2-)) on the process was also studied.