A series of of 6,7-disubstituted-4-anilinoquinoline-3-carbonitrile derivatives that function as irreversible inhibitors of EGFR and HER-2 kinases have been prepared. These inhibitors have, at the 6-position, butynamide, crotonamide, and methacrylamide Michael acceptors bearing water-solublilizing substituents. These compounds were prepared by acylation of 6-amino-4-(arylamino)quinoline-3-carbonitriles with unsaturated acid chlorides or mixed anhydrides. We performed competitive reactivity studies showing that attaching a dialkylamino group onto the end of the Michael acceptor results in compounds with greater reactivity due to intramolecular catalysis of the Michael addition. This, along with improved water-solubility results in compounds with enhanced biological properties. We present molecular modeling results consistent with the proposed mechanism of inhibition. One compound, 5 (EKB-569), which shows excellent oral in vivo activity, was selected for further studies and is currently in phase I clinical trials for the treatment of cancer.