Neurotrophic factors exert considerable neuroprotective and neurorestorative effects in neurodegenerative diseases. Because neuronal progenitor cells have, at least in part, the potency to restore degenerated neuronal networks, transgenic high-dosage expression of neurotrophins by these cells in neurotransplantation may be advantageous. In the present study, a retroviral vector containing the gene of rat ciliary neurotrophic factor (rCNTF) was permanently transfected into a striatal neuronal progenitor cell line. Qualitative and quantitative analyses demonstrated a sustained expression of the transgene; i.e., rCNTF was present at the mRNA level and protein level. Moreover, cocultivation in separate chambers of transgenic CNTF-ST14A cells and CNTF-dependent TF1 cells exerted typical biological effects, such as increased proliferation and differentiation of the TF1 cells, indicating the functional integrity of the secreted recombinant neurotrophin. The CNTF-ST14A cells displayed improved stress response compared with native ST14A cells under differentiation conditions, i.e., at the nonpermissive temperature of 39 degrees C and after staurosporine exposure, respectively. This effect coincided with a relatively reduced apoptosis rate and a raised metabolic activity of CNTF-ST14A cells at 39 degrees C. Neurotransplantation of CNTF-ST14A cells in the rat quinolinic acid model of Huntington's disease showed a significant and sustained decline in pathological apomorphine-induced rotations compared with parental ST14A cells. We conclude that sustained functional transgene CNTF production improves stress response as well as metabolic activity, making CNTF-ST14A cells a promising tool for neurotransplantation in the quinolinic acid model of Huntington's disease.
Copyright 2002 Wiley-Liss, Inc.