Urotensin-II (U-II), a vasoactive cyclic neuropeptide, was recently identified as the natural ligand for the G-protein coupled receptor GPR14. The expression pattern of U-II and GPR14 are consistent with a role as a neurohormonal regulatory system in cardiovascular homeostasis. Urotensin-II induces a rapid and short-lasting rise in intracellular calcium in recombinant GPR14 expressing cells. In the present study we show that U-II induces signal transduction pathways leading to the long-lasting activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in chinese hamster ovary cells expressing human GPR14 (CHO-GPR14). Furthermore, we observed a growth-stimulating and PD98059 sensitive activity of U-II in CHO-GPR14 cells, but not CHO-K1 cells. The investigation of the GPR14 induced signal transduction pathways leading to ERKI/2 phosphorylation revealed a previously unsuspected role for G(i/o)-protein coupling and showed an involvement of phospatidylinositol-3-kinase, phospholipase C and calcium channel mediated mechanisms. Our results suggest that U-II and its receptor GPR14 may be involved in long-lasting physiological effects such as cardiovascular remodeling.