The C5a-anaphylatoxin which is generated by limited proteolysis upon activation of the fifth component of complement may be induced by the classical, the alternative or the lectin pathway. C5a has been shown, under normal conditions, to induce the release of prostanoids from Kupffer cells (KC) and hepatic stellate cells (HSC) and thereby indirectly to increase glucose output from hepatocytes (HC). A direct action of C5a on HC would require the expression of the specific C5a receptor (C5aR). In studies using quantitative RT-PCR it was shown that non-stimulated HC lack C5aR, in contrast to KC, HSC and sinusoidal endothelial cells (SEC) all of which contained mRNA for the C5aR in decreasing amounts. FACS analyses, immunohisto- and immunocytochemistry as well as functional analyses confirmed the results of the RT-PCR assays. Under inflammatory situations the C5aR was found to be upregulated in various organs and tissues which included the liver. Interleukin-6 (IL-6) as a main inflammatory mediator in the liver induced a de novo expression of functional C5aR in HC in-vitro and in-vivo. In contrast, LPS failed to induce C5aR directly in cultured HC in-vitro but induced C5aR in HC in vivo and in co-cultures of HC and KC which release IL-6 upon stimulation with LPS. So far, the only known effector function of C5a on HSC was the induction of prostanoid release. In an approach to reveal new functions of C5aR in HSC, the cells responsible for liver fibrosis, it could be shown that C5a upregulated fibronectin-specific mRNA five-fold whereas entactin, collagen IV and the structure protein smooth muscle actin were not affected. In addition, C5a did not upregulate specific mRNA for the profibrotic cytokine TGF-beta1 in either isolated KC or HSC. Thus, C5a alone appears to have only a limited role in the induction of liver fibrosis.