Male Long-Evans rats sustained injections of 5,7-dihydroxytryptamine (5,7-DHT) into the fimbria-fornix and the cingular bundle or/and intraseptal injections of 192 IgG-saporin to induce serotonergic or/and cholinergic hippocampal denervations; Sham-operated rats served as controls. Four to ten weeks after lesioning, we measured (i). the electrically evoked release of acetylcholine ([3H]ACh), noradrenaline ([3H]NA) and serotonin ([3H]5-HT) in hippocampal slices in the presence of drugs acting on auto- or heteroreceptors, (ii). the nicotine-evoked release of NA and (iii). the choline acetyltransferase (ChAT) activity and the concentration of monoamines in homogenates. Saporin lesions reduced the accumulation of [3H]choline, the release of [3H]ACh and the ChAT activity, but increased the concentration of NA and facilitated the release of [3H]NA evoked by nicotine. 5,7-DHT lesions reduced the accumulation and the release of [3H]5-HT, the concentration of 5-HT, and also facilitated the release of [3H]NA evoked by nicotine. Accumulation and electrically evoked release of [3H]NA were not altered by either lesion. The combination of both toxins resulted in an addition of their particular effects. The 5-HT(1B) receptor agonist, CP 93129, and the muscarinic agonist, oxotremorine, reduced the release of [3H]ACh in control and 5,7-DHT-lesioned rats; in rats injected with saporin, their effects could not be measured reliably. CP 93129 and the alpha(2)-adrenoceptor agonist, UK 14304, reduced the release of [3H]5-HT in all groups by about 65%.
In conclusion: (i). selective neurotoxins can be combined to enable controlled and selective damage of hippocampal transmitter systems; (ii). 5-HT exerts an inhibitory influence on the nicotine-evoked release of NA, but partial serotonergic lesions do not influence the release of ACh at a presynaptic level and (iii). presynaptic modulatory mechanisms involving auto- and heteroreceptors may be conserved on fibres spared by the lesions.