Nicotinamide prevents the long-term effects of perinatal asphyxia on basal ganglia monoamine systems in the rat

Exp Brain Res. 2003 Jan;148(2):227-32. doi: 10.1007/s00221-002-1304-5. Epub 2002 Nov 19.

Abstract

Asphyxia during birth can cause gross brain damage, but also subtle perturbations expressed as biochemical or motor deficits with late onset in life. Thus, it has been shown that brain dopamine levels can be increased or decreased depending upon the severity of the insult, and the region where the levels are determined. In this study, perinatal asphyxia was evoked by immersing pup-containing uterus horns removed by hysterectomy in a water bath at 37 degrees C for various periods of time from 0 to 20 min. After the insult, the pups were delivered, given to surrogate mothers, treated with nicotinamide, further observed and finally, 4 weeks later, killed for monoamine biochemistry of tissue samples taken from substantia nigra, neostriatum and nucleus accumbens. The main effect of perinatal asphyxia was a decrease in dopamine and metabolite levels in nucleus accumbens, and a paradoxical increase in the substantia nigra. Nicotinamide (100 mg/kg i.p., once a day for 3 days, beginning 24 h after the perinatal asphyctic insult) prevented the effect of asphyxia in nucleus accumbens. Furthermore, striatal dopamine levels were increased by nicotinamide in asphyctic animals. No apparent changes were observed in substantia nigra. A prominent unexpected effect of perinatal asphyxia alone was on the levels of the metabolite of 5-hydroxytryptamine, 5-hydroxyindoleacetic acid (5-HIAA), which were increased in substantia nigra and decreased in both neostriatum and accumbens. However, nicotinamide increased 5-HIAA levels in all regions, which appeared to be related to the extent of the asphyctic insult. These results suggest that nicotinamide is a useful treatment against the long-term consequences produced by perinatal asphyxia on brain monoamine systems, and that there is a therapeutic window following the insult, providing a therapeutic opportunity to protect the brain.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Asphyxia / drug therapy*
  • Asphyxia / metabolism*
  • Basal Ganglia / drug effects
  • Basal Ganglia / metabolism*
  • Biogenic Monoamines / metabolism*
  • Cesarean Section / methods
  • Female
  • Niacinamide / pharmacology*
  • Niacinamide / therapeutic use
  • Pregnancy
  • Rats

Substances

  • Biogenic Monoamines
  • Niacinamide