Cellular and molecular aspects of drugs of the future: oxaliplatin

Cell Mol Life Sci. 2002 Nov;59(11):1914-27. doi: 10.1007/pl00012514.

Abstract

Oxaliplatin (Eloxatine) is a third-generation platinum compound which has shown a wide antitumour effect both in vitro and in vivo, a better safety profile than cisplatin and a lack of cross-resistance with cisplatin and carboplatin. In this scenario, oxaliplatin may represent an innovative and challenging drug extending the antitumour activity in diseases such as gastrointestinal cancer that are not usually sensitive to these coordination complexes. Oxaliplatin has a non-hydrolysable diaminocyclohexane (DACH) carrier ligand which is maintained in the final cytotoxic metabolites of the drug. Like cisplatin, oxaliplatin targets DNA producing mainly 1,2-GG intrastrand cross-links. The cellular and molecular aspects of the mechanism of action of oxaliplatin have not yet been fully elucidated. However, the intrinsic chemical and steric characteristics of the DACH-platinum adducts appear to contribute to the lack of cross-resistance with cisplatin. To date, mismatch repair and replicative bypass appear to be the processes most likely involved in differentiating the molecular responses to these agents.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / metabolism
  • Antineoplastic Agents / pharmacology*
  • DNA Repair / drug effects
  • Drug Resistance, Neoplasm*
  • Humans
  • Organoplatinum Compounds / chemistry
  • Organoplatinum Compounds / metabolism
  • Organoplatinum Compounds / pharmacology*
  • Oxaliplatin

Substances

  • Antineoplastic Agents
  • Organoplatinum Compounds
  • Oxaliplatin