Triggering of sarcoplasmic reticulum Ca2+ release and contraction by reverse mode Na+/Ca2+ exchange in trout atrial myocytes

Am J Physiol Regul Integr Comp Physiol. 2003 May;284(5):R1330-9. doi: 10.1152/ajpregu.00404.2002. Epub 2003 Jan 16.

Abstract

Whole cell patch clamp and intracellular Ca(2+) transients in trout atrial cardiomyocytes were used to quantify calcium release from the sarcoplasmic reticulum (SR) and examine its dependency on the Ca(2+) trigger source. Short depolarization pulses (2-20 ms) elicited large caffeine-sensitive tail currents. The Ca(2+) carried by the caffeine-sensitive tail current after a 2-ms depolarization was 0.56 amol Ca(2+)/pF, giving an SR Ca(2+) release rate of 279 amol Ca(2+). pF(-1). s(-1) or 4.3 mM/s. Depolarizing cells for 10 ms to different membrane potentials resulted in a local maximum of SR Ca(2+) release, intracellular Ca(2+) transient, and cell shortening at 10 mV. Although 100 microM CdCl(2) abolished this local maximum, it had no effect on SR Ca(2+) release elicited by a depolarization to 110 or 150 mV, and the SR Ca(2+) release was proportional to the membrane potential in the range -50 to 150 mV with 100 microM CdCl(2). Increasing the intracellular Na(+) concentration ([Na(+)]) from 10 to 16 mM enhanced SR Ca(2+) release but reduced cell shortening at all membrane potentials examined. In the absence of TTX, SR Ca(2+) release was potentiated with 16 mM but not 10 mM pipette [Na(+)]. Comparison of the total sarcolemmal Ca(2+) entry and the Ca(2+) released from the SR gave a gain factor of 18.6 +/- 7.7. Nifedipine (Nif) at 10 microM inhibited L-type Ca(2+) current (I(Ca)) and reduced the time integral of the tail current by 61%. The gain of the Nif-sensitive SR Ca(2+) release was 16.0 +/- 4.7. A 2-ms depolarization still elicited a contraction in the presence of Nif that was abolished by addition of 10 mM NiCl(2). The gain of the Nif-insensitive but NiCl(2)-sensitive SR Ca(2+) release was 14.8 +/- 7.1. Thus both reverse-mode Na(+)/Ca(2+) exchange (NCX) and I(Ca) can elicit Ca(2+) release from the SR, but I(Ca) is more efficient than reverse-mode NCX in activating contraction. This difference may be due to extrusion of a larger fraction of the Ca(2+) released from the SR by reverse-mode NCX rather than a smaller gain for NCX-induced Ca(2+) release.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caffeine / pharmacology
  • Calcium / metabolism*
  • Calcium Channel Blockers / pharmacology
  • Calcium-Binding Proteins / metabolism
  • Cells, Cultured
  • Membrane Potentials / drug effects
  • Myocardial Contraction / drug effects*
  • Myocardium / cytology
  • Myocardium / metabolism*
  • Oncorhynchus mykiss / physiology*
  • Sarcoplasmic Reticulum / drug effects
  • Sarcoplasmic Reticulum / metabolism*
  • Sodium / metabolism*
  • Sodium / pharmacology

Substances

  • Calcium Channel Blockers
  • Calcium-Binding Proteins
  • Caffeine
  • Sodium
  • Calcium