Bleomycin (Bm), a 1.4 kDa glycopeptide excreted by Streptomyces verticillus, is a natural antibacterial compound used in therapy as antineoplastic drug. To counteract its biological activity, cells have developed several resistance mechanisms, one of these based on proteins able to tightly bind Bm. In this paper, the interaction of Zn(2+)-Bm with the Streptoalloteichus hindustanus Bm resistance protein (ShBle) has been investigated by solution state NMR. Sequential nOe and chemical shift index have shown that the fold of the protein (in absence or presence of Bm) is identical to the previously published X-ray structure. The dimeric nature of ShBle is confirmed by the diffusion tensor as determined by NMR relaxation data. Using isotope filtered nOe experiment, intermolecular nOes between Bm and ShBle have been observed as used for modeling. While the interaction of the Bm metal binding site with ShBle appears to be uniquely defined, several conformations of the bithiazole moieties are compatible with the NMR data. Binding of Bm also induces changes of the local dynamics (stretch N85-G91), as shown by (15)N relaxation data. These results are discussed in the context of several Bm analogues able to interact with ShBle and of the recently published X-rays structures.