In the HFE-gene era, precise diagnostic parameters remain important to characterize individual iron stores, because the indication for therapy and prognosis are mainly related to the extent of iron loading. The frequently used serum ferritin interferes with non-iron related factors such as inflammation and may produce falsely positive values. We used a SQUID-biosusceptometer in a large series of patients (n = 679) to measure liver iron concentration in the differential diagnosis and therapy control of hereditary hemochromatosis (SQUID = superconducting quantum interference device). This truly non-invasive technique is sensitive, reliable, fast (online results), and also cost-effective when compared to invasive liver biopsy. Recently, ferritin iron content was propagated as a better parameter than ferritin protein. However, we found a poor correlation between ferritin iron and individual liver iron concentrations in patients with iron overload. Ferritin iron saturation varied in a range between 3 and 10%, independent from liver iron concentration. No differences were found between patients with hemochromatosis and secondary iron overload disease. Only patients with liver cell damage had increased ferritin iron saturations. In conclusion the diagnostic values of serum ferritin protein and iron to assess iron overload are limited.