Spruce (Picea abies (L.) Karst.) needles were exposed to exhaust gas containing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) generated by combustion of polyvinyl chloride, wood, high-density polyethylene, and styrene. Photodegradation of PCDD/Fs adsorbed on spruce needles under sunlight irradiation was studied. The photodegradation of PCDD/Fs follows pseudo-first-order reaction kinetics, with photolysis half-lives ranging between 40 and 100 h. The photolysis rates of PCDF congeners are higher than PCDD congeners with the same chlorinated substitutions. Higher chlorinated PCDD/Fs tend to photolyze slowly. The wax components in spruce needles may act as proton donors and accelerate the photolysis rate. C-Cl cleavage through the addition of protons to PCDD/F molecules may be an important route for PCDD/Fs photodegradation.