Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone

Biomaterials. 2003 Apr;24(9):1583-94. doi: 10.1016/s0142-9612(02)00548-3.

Abstract

Improvement of the implant-bone interface is still an open problem and the interest in chemical modification of implant surfaces for cementless fixation has grown steadily over the past decade. Mechanical and histomorphometric investigations were performed at different times on implants inserted into sheep femoral cortical bone to compare the in vivo osseointegration of titanium screws ( X 3.5 x 7 mm length) with different surface treatments. After 8 weeks of implantation, the push-out force of anodized and hydrothermally treated implants (ANODIC) was significantly higher than that of machined implants (MACH) (36%, p<0.0005), whereas a decrease of 39% was observed for acid-etched implants (HF) when compared to other surface treatments. After 12 weeks of implantation, the push-out force values of HF implants were still significantly lower than those observed for MACH (-19%, p<0.01) and hydroxyapatite vacuum plasma-sprayed implants (HAVPS, -25%, p<0.0005), and the highest push-out force was found in HAVPS (p<0.001) implants. After 8 and 12 weeks of implantation, the AI of HF implants was significantly (p<0.05) lower ( approximately -25%) than that of MACH, HAVPS and ANODIC implants. In conclusion, results appear to confirm that there are no specific differences between ANODIC and HAVPS implants in terms of behavior. Moreover, although MACH implants show some surface contaminating agents, they appear to ensure good osseointegration within 12 weeks both mechanically and histomorphometrically, as do ANODIC and HAVPS implants. However, further studies are required to investigate bone hardness and mineralization around implants.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Bone Substitutes*
  • Bone and Bones / cytology*
  • Bone and Bones / ultrastructure
  • Microscopy, Electron, Scanning
  • Sheep
  • Titanium* / chemistry

Substances

  • Bone Substitutes
  • Titanium