The recent identification of the aberrant transport proteins ABCG5 and ABCG8 resulting in sitosterolemia suggests that intestinal uptake of cholesterol is an unselective process, and that discrimination between cholesterol and plant sterols takes place at the level of sterol efflux from the enterocyte. Although plant sterols are structurally very similar to cholesterol, differing only in their side chain length, they are absorbed from the intestine to a markedly lower extent. In order to further evaluate the process of discrimination, three different sterols (cholesterol, campesterol, sitosterol) and their corresponding 5 alpha-stanols (cholestanol, campestanol, sitostanol) were compared concerning their concentration in the proximal small intestine, in serum, and in bile after a single oral dose of deuterated compounds. The data obtained support the hypothesis that i) the uptake of sterols and stanols is an extremely rapid process, ii) discrimination probably takes place on the level of reverse transport back into the gut lumen, iii) plant stanols are taken up, but not absorbed to a measurable extent, and iv) the process of discrimination probably also exists at the level of biliary excretion. The range of structural alterations that decrease intestinal absorption and increase biliary excretion is: 1) campesterol, 2) cholestanol-sitosterol, and 3) campestanol-sitostanol.