The majority of immunotherapy-based gene therapy protocols consist of ex vivo gene transfer in tumor cells. To prevent further in vivo growth, modified cells must be irradiated before reinjection into patients. The present study examines the effects of gamma-irradiation on transgene expression in transduced leukemic cells. Human and murine leukemic cells were transfected with retroviral vectors or plasmids carrying beta-galactosidase, GM-CSF or CD80 genes. Fresh leukemic cells from patients with acute myeloid leukemia (AML) were transfected with AdZ.F(pK7) adenoviral vector. gamma-irradiation at various lethal doses enhanced transgene expression in leukemic cell lines and fresh AML cells when the gene of interest was under CMV promoter but not when SV40 promoter was used. Oxidative stress also enhanced transgene expression and both irradiation and oxidative stress effects were inhibited by addition of N-acetyl-L-cysteine, a thiol anti-oxidant, indicating the involvement of reactive oxygen species. Transgene expression was also enhanced in vivo 48 and 120 h after subcutaneous injection of irradiated leukemic cells in syngeneic mice. These results show that a cell vaccine protocol using ex vivo gene transfer of transduced cells might be feasible in acute leukemia even if leukemic cells must be irradiated at lethal doses prior to reinjection to patients.