A disproportionate accumulation of fibrillar collagen is a characteristic feature of hypertensive heart disease, but the extent of myocardial fibrosis may differ in different models of hypertension. In experimental studies, aldosterone and endothelins emerge as important determinants of myocardial fibrosis. Changes in myocardial extracellular matrix and collagen deposition can be estimated noninvasively by analysis of the ultrasonic backscatter signal, which arises from tissue heterogeneity within the myocardium and describes myocardial texture. This study was designed to investigate the relations between myocardial integrated backscatter and circulating aldosterone and immunoreactive endothelin in human hypertension. The study population consisted of 56 subjects: 14 healthy normotensive volunteers and 42 hypertensive patients (14 with primary aldosteronism, 7 with renovascular hypertension, and 21 with essential hypertension). The patients with essential and secondary hypertension were matched for age, gender, body mass index, and blood pressure. Myocardial integrated backscatter at diastole was 19.8+/-2.0 and 20.8+/-2.9 decibels in normotensive control subjects and patients with essential hypertension and significantly higher in patients with primary aldosteronism (27.4+/-3.8 decibels, P<0.01) and renovascular hypertension (26.8+/-4.8 decibels, P<0.01). In the population as a whole, as well as in the hypertensive subpopulation, myocardial integrated backscatter was directly related to plasma aldosterone (r=0.73 and 0.71, P<0.01 for both) and immunoreactive endothelin (r=0.60 and 0.56, P<0.01 for both). The data of this study suggest that in human hypertension, circulating aldosterone and immunoreactive endothelin may induce alterations in left ventricular myocardial texture, possibly related to increased myocardial collagen content.