Gas-phase infrared spectrum of the protonated water dimer

Science. 2003 Feb 28;299(5611):1375-7. doi: 10.1126/science.1081634. Epub 2003 Feb 6.

Abstract

The protonated water dimer is a prototypical system for the study of proton transfer in aqueous solution. We report infrared photodissociation spectra of cooled H+(H2O)2 [and D+(D2O2] ions, measured between 620 and 1900 wave numbers (cm-1). The experiment directly probes the shared proton region of the potential energy surface and reveals three strong bands below 1600 cm-1 and one at 1740 cm-1 (for H5O2+). From a comparison to multidimensional quantum calculations, the three lower energy bands were assigned to stretching and bending fundamentals involving the O...H+...O moiety, and the highest energy band was assigned to a terminal water bend. These results highlight the importance of intermode coupling in shared proton systems.