We transfected a green fluorescent protein-tagged PSD-95 (PSD-95gfp) into cultured rat cerebellar granule cells (CGCs) to investigate the role of PSD-95 in excitatory synapse maturation. Cells were grown in low potassium to favour functional synapse formation in vitro. Transfected cells displayed clear clusters of PSD-95gfp, often at the extremities of the short dendritic trees. We recorded NMDA and AMPA miniature excitatory postsynaptic currents (NMDA- and AMPA-mESPCs) in the presence of TTX and bicuculline. At days in vitro (DIV) 7-8 PSD-95gfp-transfected cells had NMDA-mEPSCs with faster decay and smaller amplitudes than matching controls. In contrast, AMPA-mEPSC frequencies and amplitudes were increased. Whole-cell current density and ifenprodil sensitivity were reduced in PSD-95gfp cells, indicating a reduction of NR2B subunits containing NMDA receptors. No changes were observed compared to control when cells were transfected with cDNA for PSD-95gfp with palmitoylation site mutations that prevent targeting to the synapse. Overexpression of the NMDA receptor NR2A subunit, but not the NR2B subunit, prevented NMDA-mEPSC amplitude reduction when cotransfected with PSD-95gfp. PSD-95gfp overexpression produced faster NMDA-mEPSC decay when transfected alone or with either NR2 subunit. Surface staining of the epitope-tagged NR2 subunits revealed that colocalization with PSD-95gfp was higher for flag-tagged NR2A subunit clusters than for flag-tagged NR2B subunit clusters. These data suggest that PSD-95 overexpression in CGCs favours synaptic maturation by allowing synaptic insertion of NR2A and depressing expression of NR2B subunits.