The folding of polypeptides associated with biomembranes is a ubiquitous phenomenon, yet the thermodynamics underlying the process are poorly understood. In the present work we examine the unfolding of a series of alpha-helical amphipathic membrane-associated peptides using guanidine hydrochloride as a denaturant. The peptides are based on the class A amphipathic helix motif, and each contains a single tryptophan at sequence position 2, 3, 7, 12, or 14. The isothermal unfolding process was monitored by circular dichroism ellipticity at 222 nm to monitor changes in the helical structure of the peptide. Tryptophan fluorescence was used to probe the local changes in the environment about the indole fluorophore. The unfolding curves generated from the two experimental techniques for each peptide-lipid complex were non-coincidental, suggesting the presence of stable intermediate(s) in the unfolding. A three-state model could adequately account for the data and yielded parameters which were consistent with the presence of a partially folded intermediate structure which (i) is closer in Gibb's free energy to the folded state than the unfolded state and (ii) retains much of the interfacial and amphipathic character of the folded state. Denaturant-induced peptide dissociation from the peptide-lipid complexes was found to be negligible as confirmed by size exclusion chromatography. The results are compared with related thermodynamic data and discussed in terms of current models of peptide folding at membrane interfaces.