Positive cofactor 4 (PC4), originally identified as a transcriptional coactivator, possesses the ability to suppress promoter-driven as well as nonspecific transcription via its DNA binding activity. Previous studies showed that the repressive activity of PC4 on promoter-driven transcription is alleviated by transcription factor TFIIH, possibly through one of its enzymatic activities. Using recombinant TFIIH, we have analyzed the role of TFIIH for alleviating PC4-mediated transcriptional repression and determined that the excision repair cross complementing (ERCC3) helicase activity of TFIIH is the enzymatic activity that alleviates PC4-mediated repression via beta-gamma bond hydrolysis of ATP. In addition, the alleviation does not require either ERCC2 helicase or cyclin-dependent kinase 7 kinase activity. We also show that, as complexed within TFIIH, the cyclin-dependent kinase 7 kinase does not possess the activity to phosphorylate PC4. Thus, TFIIH appears to protect promoters from PC4-mediated repression by relieving the topological constraint imposed by PC4 through the ERCC3 helicase activity rather than by reducing the repressive activity of PC4 via its phosphorylation.