Taking advantage of the "working draft" of the human genome and the MIT shotgun assembly of the mouse genome, we performed a comparative promoter analysis of human RefSeq mRNA (sequences from GenBank's RefSeq database). By combining this analysis with a transcription factor (TF) binding site analysis using a TRANSFAC position weight matrix (PWM) search, 86% of non-specific TF sites were removed. Using a set of genes that are regulated by parathyroid hormone (PTH), a statistical analysis was performed on the conserved TF binding sites among a set of eight human and mouse genes. From among the eight genes tested, we obtained a set of 31 TFs, suggesting possible roles for associated genes in PTH-mediated pathways. All three known PTH-responsive TFs (AP1, RUNX2, CREB) were correctly predicted by this analysis as well as two other potential TFs (VDR and CEBP Delta). Additionally, a model was made to describe the TF site characteristic module of PTH-regulated genes. This model was then used to search all human RefSeq gene promoters with established human-mouse ortholog relationships to identify other PTH-regulated genes. This comparative approach combined with statistical analysis proved to be sufficiently specific to decipher critical TFs involved in PTH-regulated pathways.