Over many years until the middle of the 1980s, the main problem in vision research had been the mechanism of transducing the visual signal from photobleached rhodopsin to the cationic channels in the plasma membrane of a photoreceptor to trigger the electrophysiological response of the cell. After cGMP was proven to be the secondary messenger, the main intriguing question has become the mechanisms of negative feedback in photoreceptors to modulate their response to varying conditions of illumination. Although the mechanisms of light-adaptation are not completely understood, it is obvious that Ca2+ plays a crucial role in these mechanisms and that the effects of Ca2+ can be mediated by several Ca2+-binding proteins. One of them is recoverin. The leading candidate for the role of an intracellular target for recoverin is believed to be rhodopsin kinase, a member of a family of G-protein-coupled receptor kinases. The present review considers recoverin, rhodopsin kinase and their interrelationships in the in vitro as well as in vivo contexts.