The clinical manifestations of allergic asthma are believed to result from a dysregulated, T helper 2 lymphocyte (Th2)-biased response to antigen. Although asthma symptoms can be controlled acutely, there is a need for a therapy that will address the underlying immune dysfunction and provide continuous control of chronic airway inflammation. The Th2-type cytokines, IL-13 and IL-4, have been demonstrated to play a crucial role in asthma pathogenesis and their selective neutralization results in the alleviation of asthmatic symptoms in mouse models. The activity of both of these cytokines can be inhibited by a mutant IL-4 protein, IL-4 receptor antagonist (IL-4RA), and thus, continual IL-4RA therapy might be beneficial in treatment of chronic asthma. To explore the potential utility of long-term gene therapy for the treatment of asthma we used a recombinant adeno-associated virus (AAV) vector to deliver and provide sustained expression of IL-4RA in vivo. We show that AAV-mediated delivery of IL-4RA to the airways of mice reduces airway hyperresponsiveness (AHR) and airway eosinophilia triggered by either IL-13 or IL-4. Furthermore, AAV-delivered IL-4RA, expressed either systemically or in the airways of mice following allergen sensitization, significantly inhibited development of airway eosinophilia and mucus production and reduced the levels of asthma-associated Th2 cytokines and AHR in the experimental mouse model of allergic asthma. Thus, gene therapy can be a potential therapeutic option to treat and control chronic airway inflammation and asthmatic symptoms.