Elongin A is a transcription elongation factor that increases the overall rate of mRNA chain elongation by RNA polymerase II. To investigate the function of Elongin A in vivo, the two alleles of the Elongin A gene have been disrupted by homologous recombination in murine embryonic stem (ES) cells. The Elongin A-deficient ES cells are viable, but show a slow growth phenotype because they undergo a delayed mitosis. The cDNA microarray and RNase protection assay using the wild-type and Elongin A-deficient ES cells indicate that the expression of only a small subset of genes is affected in the mutant cells. Taken together, our results suggest that Elongin A regulates transcription of a subset but not all of genes and reveal a linkage between Elongin A function and cell cycle progression.