The acid-sensing ion channels (ASICs) form cation channels that are transiently activated by extracellular protons. They are expressed in dorsal root ganglia (DRG) neurons and in the periphery where they play a function in nociception and mechanosensation. Previous studies showed that FMRFamide and related peptides potentiate H(+)-gated currents. To better understand this potentiation, we examined the effect of FMRFamide-related peptides on DRG neurons from wild-type mice and animals missing individual ASIC subunits. We found that FMRFamide and FRRFamide potentiated H(+)-gated currents of wild-type DRG in a dose-dependent manner. They increased current amplitude and slowed desensitization following a proton stimulus. Deletion of ASIC3 attenuated the response to FMRFamide-related peptides, whereas the loss of ASIC1 increased the response. The loss of ASIC2 had no effect on FMRFamide-dependent enhancement of H(+)-gated currents. These data suggest that FMRFamide-related peptides modulate DRG H(+)-gated currents through an effect on both ASIC1 and ASIC3 and that ASIC3 plays the major role. The recent discovery of RFamide-related peptides (RFRP) in mammals suggested that they might also modulate H(+)-gated current. We found that RFRP-1 slowed desensitization of H(+)-gated DRG currents, whereas RFRP-2 increased the peak amplitude. COS-7 cells heterologously expressing ASIC1 or ASIC3 showed similar effects. These results suggest that FMRFamide-related peptides, including the newly identified RFRPs, modulate H(+)-gated DRG currents through ASIC1 and ASIC3. The presence of several ASIC subunits, the diversity of FMRFamide-related peptides, and the distinct effects on H(+)-gated currents suggest the possibility of substantial complexity in modulation of current in DRG sensory neurons.