The CD134-CD134 ligand (CD134L) costimulatory pathway has been shown to be critical for both T and B cell activation; however, its role in regulating the alloimmune response remains unexplored. Furthermore, its interactions with other costimulatory pathways and immunosuppressive agents are unclear. We investigated the effect of CD134-CD134L pathway blockade on allograft rejection in fully MHC-mismatched rat cardiac and skin transplantation models. CD134L blockade alone did not prolong graft survival compared with that of untreated recipients, and in combination with donor-specific transfusion, cyclosporine, or rapamycin, was less effective than B7 blockade in prolonging allograft survival. However, in combination with B7 blockade, long-term allograft survival was achieved in all recipients (>200 days). Moreover, this was synergistic in reducing the frequency of IFN-gamma-producing alloreactive lymphocytes and inhibiting the generation of activated/effector lymphocytes. Most impressively, this combination prevented rejection in a presensitized model using adoptive transfer of primed lymphocytes into athymic heart transplant recipients. In comparison to untreated recipients (mean survival time (MST): 5.3 +/- 0.5 days), anti-CD134L mAb alone modestly prolonged allograft survival (MST: 14 +/- 2.8 days) as did CTLA4Ig (MST: 21.5 +/- 1.7 days), but all grafts were rejected within 24 days. Importantly, combined blockade further and significantly prolonged allograft survival (MST: 75.3 +/- 12.7 days) and prevented the expansion and/or persistence of primed/effector alloreactive T cells. Our data suggest that CD134-CD134L is a critical pathway in alloimmune responses, especially recall/primed responses, and is synergistic with CD28-B7 in mediating T cell effector responses during allograft rejection. Understanding the mechanisms of collaboration between these different pathways is important for the development of novel strategies to promote long-term allograft survival.