JNK/SAPK has been implicated in the pathogenesis of Alzheimer's disease, but the upstream cascade leading to JNK/SAPK activation has not been elucidated in the disease. In this study, we focused on one of the physiological activators of JNK/SAPK, JNK kinase 1 (JKK1). Although there was no significant difference in the level and distribution of total JKK1 between Alzheimer's disease (AD) and age-matched control cases, increased levels of activated phospho-JKK1 were specifically localized to neurofibrillary pathology including neurofibrillary tangles, senile plaque neurites, granulovaualar degenerations and neuropil threads in severe AD (Braak stage V-VI), considerably overlapping with its downstream effector, phospho-JNK/SAPK, suggesting both a functional and mechanistic link. Nuclear localization of phospho-JKK1 was also found in mild (Braak stage III-IV) but not in severe AD cases (Braak stage V-VI), suggesting a possible re-distribution correlating with the progress of the disease. By immunoblot analyses, phospho-JKK1 was significantly increased in AD over control cases. Together, these findings lend further credence to the notion that the JNK/SAPK pathway is dysregulated in AD and also indicate an active role for this pathway in disease pathogenesis.