Enhanced adenosine A(2B) mediated coronary response in reserpinised rat heart

Naunyn Schmiedebergs Arch Pharmacol. 2003 Mar;367(3):266-73. doi: 10.1007/s00210-002-0678-z. Epub 2003 Feb 14.

Abstract

In this study, we investigated the effect of noradrenaline depletion on contractile recovery in rat isolated heart following myocardial ischaemia. Groups tested included control tissues and hearts from reserpinised rats. Reserpine 1 mg/kg s.c. was injected into rats 18 to 24 h prior to experiments. Hearts underwent 15 min global normothermic ischaemia followed by 30 min reperfusion. Functional data (end diastolic pressure (EDP), heart rate (HR), left ventricular developed pressure (LVDP), dP/dt(max), dP/dt(min)) showed that contractile function following ischaemia-reperfusion is unaffected by reserpinisation. However, pre- and post-ischaemic coronary flow rates (CFR) were increased by 16 to 38% in hearts from reserpinised rats versus control hearts. Pre-ischaemic CFRs in control hearts (11.17+/-0.67 ml/in(-1) x g tissue(-1), n=9) were significantly lower then CFRs derived from reserpinised rat hearts (14.57+/-0.72 ml/min(-1)/g tissue(-1), n=10). Post-ischaemic reactive hyperaemia was evident in all groups. CFRs in reserpinised hearts remained elevated when compared to pre-ischaemic values through reperfusion (P<0.05). Reserpine treatment did not significantly alter pre- or post-ischaemic adenosine efflux. The A(2B) adenosine receptor antagonist alloxazine (10 microM) attenuated pre- and post-ischaemic CFRs in both control and reserpinised hearts (P<0.05) without altering the hyperaemic response while the A(2A) adenosine receptor antagonist 8-(3-chlorostyryl) caffeine (1 microM) did not alter CFRs in both groups. The A(3) adenosine receptor antagonist MRS1191 (0.1 microM) increased CFR in control and reserpinised hearts (P<0.05). Catecholamine depletion with reserpinisation enhances the responsiveness of the coronary resistance vessels to endogenous adenosine through activation of the A(2B) adenosine receptor.

MeSH terms

  • Adenosine / analogs & derivatives*
  • Adenosine / metabolism
  • Adenosine / pharmacology
  • Adenosine A2 Receptor Antagonists*
  • Adrenergic Uptake Inhibitors / pharmacology*
  • Animals
  • Flavins / pharmacology
  • In Vitro Techniques
  • Male
  • Myocardial Contraction / drug effects
  • Myocardial Ischemia / metabolism
  • Myocardial Ischemia / physiopathology*
  • Myocardium / metabolism*
  • Norepinephrine / metabolism
  • Purines / metabolism
  • Rats
  • Rats, Wistar
  • Reperfusion
  • Reserpine / pharmacology*
  • Time Factors
  • Tyramine / metabolism
  • Vasodilator Agents / pharmacology

Substances

  • Adenosine A2 Receptor Antagonists
  • Adrenergic Uptake Inhibitors
  • Flavins
  • Purines
  • Vasodilator Agents
  • N-(1-methyl-2-phenylethyl)adenosine
  • isoalloxazine
  • Reserpine
  • Adenosine
  • purine
  • Norepinephrine
  • Tyramine