Investigation of rhythmic discharges may provide insights into integrative mechanisms underlying nervous system control of effectors. We have previously shown that, in CNS-intact, anesthetized rats, cutaneous sympathetic vasoconstrictor neurones innervating thermoregulatory circulations exhibit a robust rhythmicity in the 0.4-1.2-Hz frequency range (T-rhythm). Here we examined whether the neural circuitry required to generate this rhythm remained intact in decerebrate (at collicular level), paralyzed and artificially ventilated preparations with cervical vagotomy, ligation of common carotid arteries and pneumothorax. Population sympathetic activity was recorded from the ventral collector nerve (VCN) of the tail in nine animals, while monitoring central respiratory drive. We found that rhythmic activity remained a robust feature and that activity behaved in a comparable manner to that previously described in the intact anesthetized preparation. Manifest as peaks in the autospectra, the dominant rhythm was either at the frequency of (f) lung inflation cycle (fLIC), central respiratory drive (fCRD) or in the 'free-run' T-rhythm frequency range. Through manipulation of fLIC we could alter the dominant rhythm of discharges. We show a significant relationship between fLIC and the likelihood of the dominant rhythm in VCN discharges being at fLIC or at a frequency that was neither fLIC nor fCRD. At fLIC of 1 Hz: in seven of nine animals the VCN dominant rhythm was 1 Hz, zero of nine displayed a dominant T-rhythm; at fLIC of 2 Hz: two of nine had a dominant VCN rhythm at 2 Hz and five of nine a T-rhythm. Furthermore, CRD was never observed to entrain to fLIC. These experiments demonstrate that the network underlying the generation of the T-rhythm is located below the collicular level of the neuraxis and that in this preparation LIC-related modulation of discharges may be mediated by spinal (sympathetic) afferents.