Virtual cystoscopy is a developing technique for bladder cancer screening. In a conventional cystoscopy, an optical probe is inserted into the bladder and an expert reviews the appearance of the bladder wall. Physical limitations of the probe place restrictions on the examination of the bladder wall. In virtual cystoscopy, a computed tomography (CT) scan of the bladder is acquired and an expert reviews the appearance of the bladder wall as shown by the CT. The task of identifying tumors in the bladder wall has often been done without extensive computational aid to the expert. We have developed an image processing algorithm that aids the expert in the detection of bladder tumors. Compared with an expert observer reading the CT, our algorithm achieves 89% sensitivity, 88% specificity, 48% positive predictive value, and 98% negative predictive value.