Objective: The purpose of this study was to investigate the effect of recombinant adeno-associated viral (rAAV) vector-mediated human vascular endothelial growth factor (VEGF165) transfer on experimental burn wounds.
Design: Randomized experiment.
Setting: Research laboratory.
Subjects: C57BL/6 male mice weighing 25-30 g.
Interventions: Mice were immersed in 80 degrees C water for 10 secs to achieve a partial-thickness scald burn. Animals were randomized to receive at two injection sites on the edge of the burn either 1011 copies of the rAAV-VEGF165 or the vector carrying the control and inert gene beta-galactosidase (rAAV-LacZ). On day 14 the animals were killed. Burn areas were used for histologic examination, evaluation of VEGF expression (immunohistochemistry) and VEGF wound content (enzyme-linked immunosorbent assay), determination of wound nitrite, and measurement of messenger RNA (mRNA) for endothelial and inducible nitric oxide synthase (eNOS and iNOS).
Measurements and main results: rAAV-VEGF165 increased epithelial proliferation, angiogenesis, and maturation of the extracellular matrix. Furthermore, gene transfer enhanced VEGF expression, studied by immunohistochemistry, and the wound content of the mature protein (rAAV-LacZ, 11 +/- 5 pg/wound; rAAV-VEGF165, 104 +/- 7 pg/wound). Moreover, VEGF165 gene transfer increased wound content of nitrate. Finally, rAAV-VEGF165 administration enhanced the messenger RNA for eNOS (rAAV-VEGF165, 1.1 +/- 0.2 relative amount of eNOS mRNA; rAAV-LacZ, 0.66 +/- 0.3 relative amount of eNOS mRNA) and iNOS (rAAV-VEGF165, 0.8 +/- 0.09 relative amount of iNOS mRNA; rAAV-LacZ, 0.45 +/- 0.05 relative amount of iNOS mRNA).
Conclusion: Our study suggests that rAAV-VEGF gene transfer may be an effective therapeutic approach to improve clinical outcomes after thermal injury.