Purpose: In recent studies, we showed that TP53 gene mutation or high levels of cytosolic vascular endothelial growth factor (VEGF) in estrogen receptor (ER)-alpha-positive primary breast tumors predict a poor disease outcome for patients treated with first-line tamoxifen for advanced disease. Mutant TP53 may up-regulate VEGF, whereas, on the other hand, wild-type TP53 may decrease VEGF production.
Experimental design: In the present study, we aimed to assess the combined predictive value of TP53 gene mutation and VEGF status of 160 advanced breast cancer patients with ER-positive tumors who were treated with tamoxifen (median follow-up from start of tamoxifen treatment, 64 months). To assess TP53 gene mutation status, the entire open reading frame was sequenced; for VEGF status, an ELISA was used.
Results: In univariate analysis, both TP53 gene mutation (28% of the tumors) and a VEGF level above the median value were significantly associated with a short progression-free survival, post-relapse overall survival, and a poor rate of response to tamoxifen. In Cox multivariate regression analysis including the traditional predictive factors, the addition of TP53 gene mutation and VEGF status, alone or in combination, significantly predicted a poor efficacy of tamoxifen treatment. When the two factors were combined, a significantly decreased odds ratio was seen for the rate of response (odds ratio, 0.27). Similarly, an increased hazard ratio (HR) was seen for progression-free survival (HR, 2.32) and post-relapse overall survival (HR, 1.68) in the group with mutant TP53 and high VEGF compared with the group with both risk factors absent.
Conclusions: Combined TP53 gene mutation status and high VEGF levels of ER-positive primary breast tumors independently predict a poor course of the disease of patients with advanced breast cancer treated with tamoxifen. These patients, having unfavorable tumor characteristics, might benefit more from other types of (individualized) treatment protocols.