An enclosed flow-through system using airborne ozone for disinfection and which removes the ozone with a catalytic converter was tested with a strain of Escherichia coli. Petri dishes containing the microorganisms were inserted in a chamber and exposed for 10-480 min to ozone concentrations between 4 and 20 ppm. Death rates in excess of 99.99% were achieved. Survival data is fitted to a two-stage curve with a shoulder based on the multihit target model. Ozone was removed from the exhaust air to nondetectable levels using a metal oxide based catalyst. The possibility of using ozone as an airborne disinfectant for internal building surfaces and catalytically removing the ozone on exhaust is demonstrated to be feasible. A model for the decay of Bacillus cereus under ozone exposure is proposed as an example for predicting the sterilization of buildings contaminated with anthrax. The potential for disinfecting airstreams and removing ozone to create breathable air is also implied by the results of this experiment.