Several factors may control trehalose and glycogen synthesis, like the glucose flux, the growth rate, the intracellular glucose-6-phosphate level and the glucose concentration in the medium. Here, the possible relation of these putative inducers to reserve carbohydrate accumulation was studied under well-defined growth conditions in nitrogen-limited continuous cultures. We showed that the amounts of accumulated trehalose and glycogen were regulated by the growth rate imposed on the culture, whereas other implicated inducers did not exhibit a correlation with reserve carbohydrate accumulation. Trehalose accumulation was induced at a dilution rate (D)</=0.10 h(-1), whereas glycogen accumulation gradually increased at decreasing growth rates. The growth rate dependency of trehalose accumulation was supported by studies in cells overexpressing the G(1)-cyclin CLN3. The trehalose level appeared to be dependent on the duration of the G(1) phase, as trehalose was only accumulated at a G(1) phase duration of more than 5 h in both wild-type and CLN3-overexpressing cells. On the other hand, the glycogen level was reduced by CLN3 overexpression in a cell cycle-independent manner. A possible regulatory mechanism that links trehalose and glycogen accumulation to the growth rate is discussed.