HMGB1 is an abundant nuclear and cytoplasmic protein present in mammalian cells. It is traditionally known as a DNA binding protein involved in maintenance of nucleosome structure and regulation of gene transcription. Beyond these intracellular roles, we recently discovered that HMGB1 is released from activated macrophages and functions as a late mediator of lethal endotoxemia. Addition of HMGB1 to macrophage cultures activates cytokine release. When released into the extracellular milieu, HMGB1 causes systemic inflammatory responses including acute lung injury, epithelial barrier dysfunction, and death. Passive immunization with anti-HMGB1 antibodies confers significant protection against lethality induced by LPS administration and sepsis caused by cecal perforation in mice. Truncation of HMGB1 into individual structural domains revealed that the HMGB1 A box, a DNA-binding motif, specifically antagonizes the activity of HMGB1 and rescues mice from lethal sepsis caused by cecal perforation. Thus, strategies that target HMGB1 with specific antibodies or antagonists have potential for treating lethal systemic inflammatory diseases characterized by excessive HMGB1 release.