New bone formation with teriparatide [human parathyroid hormone-(1-34)] is not retarded by long-term pretreatment with alendronate, estrogen, or raloxifene in ovariectomized rats

Endocrinology. 2003 May;144(5):2008-15. doi: 10.1210/en.2002-221061.

Abstract

With the ready availability of several osteoporosis therapies, teriparatide [human PTH-(1-34)] is likely to be prescribed to postmenopausal women with prior exposure to agents that prevent bone loss, such as bisphosphonates, estrogen, or selective estrogen receptor modulators. Therefore, we evaluated the ability of once daily teriparatide to induce bone formation in ovariectomized (Ovx) rats with extended prior exposure to various antiresorptive agents, such as alendronate (ABP), 17 alpha-ethinyl estradiol (EE), or raloxifene (Ral). Sprague Dawley rats were Ovx and treated with ABP (28 microg/kg, twice weekly), EE (0.1 mg/kg per d), or Ral (1 mg/kg per d) for 10 months before switching to teriparatide 30 microg/kg per d for another 2 months. Analysis of the proximal tibial metaphysis showed that all three antiresorptive agents prevented ovariectomy-induced bone loss after 10 months, but were mechanistically distinct, as shown by histomorphometry. Before teriparatide treatment, ABP strongly suppressed activation frequency and bone formation rate to below levels in other treatment groups, whereas these parameters were not different from sham values for EE or Ral. Trabecular area for ABP, EE, and Ral were greater than that in Ovx controls. However, the trabecular bone effects of ABP were attributed not only to effects on the secondary spongiosa, but also to the preservation of primary spongiosa, which was prevented from remodeling. After 2 months of teriparatide treatment, lumbar vertebra showed relative bone mineral density increases of 18%, 7%, 11%, and 10% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Histomorphometry showed that trabecular area was increased by 105%, 113%, 36%, and 48% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Teriparatide enhanced mineralizing surface, mineral apposition rate, and bone formation rate in all groups. Compression testing of vertebra showed that teriparatide improved strength (peak load) and toughness in all groups to a proportionately similar extent compared with 10 month levels. These data showed a surprising ability of the rat skeleton to respond to teriparatide despite extensive pretreatment with ABP, EE, or Ral. Therefore, the mature skeleton of Ovx rats remains highly responsive to the appositional effects of teriparatide regardless of pretreatment status in terms of cancellous bone area or rate of bone turnover.

MeSH terms

  • Alendronate / administration & dosage*
  • Animals
  • Biomechanical Phenomena
  • Bone Density / drug effects
  • Bone Resorption / prevention & control
  • Drug Administration Schedule
  • Ethinyl Estradiol / administration & dosage*
  • Female
  • Femur / drug effects
  • Femur / physiopathology
  • Osteogenesis / drug effects*
  • Ovariectomy
  • Raloxifene Hydrochloride / administration & dosage*
  • Rats
  • Rats, Sprague-Dawley
  • Spine / drug effects
  • Spine / physiopathology
  • Tensile Strength
  • Teriparatide / pharmacology*
  • Tibia / drug effects
  • Tibia / pathology
  • Time Factors

Substances

  • Teriparatide
  • Ethinyl Estradiol
  • Raloxifene Hydrochloride
  • Alendronate