The translation of maternal glp-1 mRNAs is regulated temporally and spatially in C. elegans embryos. The 3' UTR (untranslated region) of the maternal glp-1 mRNA is important for both kinds of regulation. The spatial control region is required to suppress translation in the posterior blastomeres. The temporal one is required to suppress translation in oocytes and one-cell stage embryos. We show that a CCCH zinc-finger protein, POS-1, represses glp-1 mRNA translation by binding to the spatial control region. We identified an RNP-type RNA-binding protein, SPN-4, as a POS-1-interacting protein. SPN-4 is present developmentally from the oocyte to the early embryo and its distribution overlaps with that of POS-1 in the cytoplasm and P granules of the posterior blastomeres. SPN-4 binds to a subregion of the temporal control region in the 3' UTR and is required for the translation of glp-1 mRNA in the anterior blastomeres. We propose that the balance between POS-1 and SPN-4 controls the translation of maternal glp-1 mRNA.