The Herpes simplex virus 1 (HSV) thymidine kinase (tk) suicide gene together with ganciclovir (GCV) have been successfully used for the in vivo treatment of various solid tumors and for the ablation of unwanted transfused stem cells in recent clinical trials. With the aim of improving this therapeutic system, we compared the potential efficacy of adenoviral (Ad) vectors expressing enhanced tk mutants in vitro and in vivo. The previously created HSV-tk mutants dm30 and sr39, created by random sequence mutagenesis, were inserted into a standard Ad.RSV E1(-)E3(-) backbone using homologous recombination. GCV killing of Ad.HSV-tk, Ad.dm30-tk and Ad.sr39-tk was assessed in various tumor cell lines with a cell proliferation assay. Cells expressing the two TK mutants were two-to-five-fold more sensitive to GCV when compared with Ad.HSV-tk transduced cells in all cell lines tested (five human mesotheliomas, one human lung cancer, a human cervical carcinoma, a mouse fibrosarcoma, and a rat glioma line) at equal TK expression levels. Flank tumor models, including cell-mixing studies, assessed the in vivo efficacy of the engineered viruses in BALB/C and SCID mice. In all animal studies, Ad.dm30-tk and Ad.sr39-tk showed more tumor growth inhibition than Ad.HSV-tk when GCV was administered. The use of adenovirus-mediated gene transfer of both tk mutants dm30-tk and sr39-tk for cancer suicide gene therapy should provide a more effective and safer alternative to wild-type HSV-tk.