The absolute quantification of blood plasma metabolites by proton NMR spectroscopy is complicated by the presence of a baseline and broad resonances originating from serum macromolecules and lipoproteins. A method for spectral simplification of proton NMR spectra of blood plasma is presented. Serum macromolecules and metabolites are completely separated by utilizing the large difference in translational diffusion coefficients in combination with diffusion-sensitized proton NMR spectroscopy. The concentration of blood plasma metabolites can be quantified by using formate as an internal concentration reference. The results are compared with those obtained with ultrafiltration, a traditional method for separating macromolecules and metabolites, and demonstrate an excellent correlation between the two methods. The general nature of diffusion-sensitized NMR spectroscopy allows application on a wide range of biological fluids.