Dystrophin is absent in muscle fibers of patients with Duchenne muscular dystrophy (DMD) and in muscle fibers from the mdx mouse, an animal model of DMD. Disrupted excitation-contraction (E-C) coupling has been postulated to be a functional consequence of the lack of dystrophin, although the evidence for this is not entirely clear. We used mechanically skinned fibers (with a sealed transverse tubular system) prepared from fast extensor digitorum longus muscles of wild-type control and dystrophic mdx mice to test the hypothesis that dystrophin deficiency would affect the depolarization-induced contractile response (DICR) and sarcoplasmic reticulum (SR) function. DICR was similar in muscle fibers from mdx and control mice, indicating normal voltage regulation of Ca2+ release. Nevertheless, rundown of DICR (<50% of initial) was reached more rapidly in fibers from mdx than control mice [control: 32 +/- 5 depolarizations (n = 14 fibers) vs. mdx: 18 +/- 1 depolarizations (n = 7) before rundown, P < 0.05]. The repriming rate for DICRs was decreased in fibers from mdx mice, with lower submaximal DICR observed after 5, 10, and 20 s of repriming compared with fibers from control mice (P < 0.05). SR Ca2+ reloading was not different in fibers from control and mdx mice, and no difference was observed in SR Ca2+ leak. Caffeine (2-7 mM)-induced contraction was diminished in fibers from mdx mice compared with control (P < 0.05), indicating depressed SR Ca2+ release channel activity. Our findings indicate that fast fibers from mdx mice exhibit some impairment in the events mediating E-C coupling and SR Ca2+ release channel activity.